Ana içeriğe atla

Hareketlerimizden Enerji Elde Eden Süper İnce Kumaş Geliştirildi


Çevremizi saran, diğer türlü boşa gidecek enerjiden birazcık çalmak için ihtiyaç duyduğumuz şey, bu jel kaplı, karbon nanotüplerden yapılmış sarmal lifler olabilir.
Twistron denen bu materyalin iplikleri laboratuvar ortamında şimdiden gelecek vadediyor ve bir gün vücudumuzdaki, eşyalarda veya daha geniş çevredeki değişimin payı kadar enerji toplayabilecek bir “enerji toplayıcısına” dönüştürülebilir.
Texas Üniversitesi’nden bu teknolojiyi geliştiren uluslararası ekibin başındaki araştırmacı Carter Haines, twistron enerji hasatçılarını kavramanın en basit yolunun, elinde çekiştirdiğinde elektrik üreten bir parça kumaş olduğunu düşünmek diyor.
Ortamdaki ısıdan, radyo dalgalarından veya hareketten gelen küçücük miktarlardaki enerjinin biriktirilip cep boyu elektronik aletlere güç sağlamak çok da yeni bir kavram değil.

Peki acaba neden bu fikre, bu kadar takılmış durumdayız? Sonuçta, dünyamız düşük seviyede elektromanyetik dalgalar, sürtünme ve ısı gradyanlarıyla uğuldayıp duruyor ve bunlar da enerji eldesi için birkaç elektron etrafında dolanmak üzere toplanabilir. İşte tüm bu çeşitliliğe karşı, enerjiyi toplayan bir materyal yapıp, bu materyali de mümkün olduğunca net, ucuz, çok yönlü ve etkili yapmak için yarış devam ediyor.
Twistron son cevap olmayabilir, ama kesinlikle gelecek vadediyor.
Liflerden elektrik eldesindeki sorumlu mekanizma şaşırtıcı derecede basit. İç içe geçmiş karbon atomlarının 10.000 kere tüplere dolanmasından ibaret, ince bir iplik oluşturan liflerin kalınlığı da insan saçından bile ince.
Bu uzun karbon nanotüpü demetleri birlikte eğriliyor ve döndürülüp elastikleştiriliyor. Bir parça ipi esnettikten sonra, tekrar gerilip gevşeyerek eski haline dönüştüğünü düşünün. Bu yapı tuzlu su kadar basit bir elektrolit solüsyonu ile kaplandığında, lifin şeklinin değişmesi, karbon nanotüpleri yerinden oynatıp yeniden şekillendirdiğinde bir voltaj yaratacak şekilde yüklenmekte.
Araştırmacı Na Li, derinlemesine bakıldığında bu kumaşlar aslında süperkapasitörler, diyor. Normal bir kapasitörü yüklemek için akü gibi bir enerji kullanılır, ama bu durumda, karbon nanotüp kumaş elektrolit solüsyonu ile yıkandığında, dokumalar elektrolitle kendileri yüklenmekteler; yani dışardan akü veya voltaj gerekmiyor diye ekliyor.
Basit bir karbon iplik olduğunu düşünürsek çekiştirildiğinde ortaya çıkan yüklenme şaşırtıcı. Bu ürünün 1 kilogramı ile saniyenin 30 katı kadar titreştiğinde 250 watt elektrik elde ediliyor. Bu miktar masaüstü bilgisayarı veya küçük bir ısıtıcıyı çalıştırmak için fazla bile.
Böyle bir yüklenmeyi sağlayacak daha etkin pek çok yöntem var tabii ki; ama bu materyalin, giydiğimiz kıyafet gibi zaten hareket etmekte olan bir şeye eklendiğini düşünürsek, akü veya güneş enerjisinin kullanılamayacağı yerlerde çok daha kolayca enerji sağlayacaktır. Nesnelerin internetine enerji sağlamak için, dağıtılmış sensörlerin ışınları gibi boşa giden enerjiyi kullanmaya büyük bir ilgi var, diye ekliyor Li.
Bu kavramın bir kanıtı olarak, araştırmacılar twistron kumaşı bir gömleğe eklediklerinde, normal nefes almanın bile bir yüklenme yaratmaya yeterli olduğunu bulmuşlar. Biraz daha ileri gidip; ince, 10 cm uzunluğunda bir ipliği bir şamandıraya bağlayıp, onun dalgalarla inip çıkarak yüklenmesinin saniyelik olarak oranını ölçümlemişler. Çıkan 1,79 mikrowatt’lık elektrik, sadece şamandıraya bağlı bir ip olduğunu düşündüğümüzde hiç de fena bir sonuç sayılmaz.
Araştırmacı Ray Baughman; twistronlarımız daha ucuza yapılabilirse, okyanus dalgalarından çok büyük miktarlarda enerji elde etmeye yarayacaklardır, diyor. Düşük miktarlarda yerleştirildiğinde bile, karbon nanotüp enerji toplayıcıları okyanusta serbest salınımdayken de raporlama istasyonlarıyla iletişim kurabilecek kadar enerji üretebiliyor.
Bu noktada bu teknolojinin üretimi ucuz veya basit değil ve daha alınacak yolu var. Ancak karbon nanotüp teknolojisi çok farklı alanlarda umut vadediyor. Yani kim bilir, belki yakın gelecekte bir gün akıllı telefonunuzu yeni, havalı twistron takımınızla yapabileceğiniz birkaç hareketle şarj ediyor olabilirsiniz.

Yorumlar

Bu blogdaki popüler yayınlar

Neden Kan Gruplarına Sahibiz?

1900 yılında, Avustralyalı doktor Karl Landsteiner tarafından keşfedilen kan grupları, 1930 yılında Landsteiner’a Nobel Ödülü’nü getirdi. O günden beri de, bilim insanları kan gruplarının biyolojisine dair daha derinlemesine incelemeleri mümkün kılan çok daha güçlü araçlar geliştirdi. Yapılan araştırmalar neticesinde, kan grupları hakkında çok daha ilginç bulgulara, örneğin; soy takibi, kan gruplarının sağlığımız üzerindeki etkileri gibi çeşitli ipuçlarına ulaşıldı. Ancak bir yandan da kan gruplarına dair çözümüne hala erişemediğimiz bazı gizemler de varlığını sürdürmeye devam ediyor. Öte yandan, modern tıp sayesinde başarabildiğimiz ve hayat kurtardığımız pek çok gelişme tarihin büyük bir çoğunluğunda neredeyse bir hayal düzeyindeydi. Rönesans doktorları, hastalarının damarlarına kan aktarımı yapıldığında neler olacağını merak etmiş, bazı doktorlar bunun pek çok hastalığın, hatta mental rahatsızlıkların bile tedavisi olabileceğini düşünüyordu. Nihayet, 1600lü yıllarda,...

Bilim İnsanları, İnsan Bağışıklık Sisteminde Yepyeni Bir “Mikro-Organ” Keşfetti

Araştırmacılar, farelerin ve insanların bağışıklık sistemlerinde yepyeni bir ‘mikro organ’ keşfettiler. On yıllar boyunca bu tarzda bir keşif yapılmamıştı. Üstelik bu keşif, bilim insanlarının gelecekte daha etkili aşılar geliştirmelerini sağlayabilir. Yüzyıllardır süren aşı çalışmaları, vücudun bir kez özel bir enfeksiyon türü ile karşılaşması durumunda, bir dahaki sefere bu enfeksiyona karşı daha iyi savaştığını gösteriyor. Bu yeni araştırma, keşfedilen mikro organın, vücudumuzun bağışıklığı ‘hatırlamasında’ anahtar bir role sahip olabileceğini ileri sürüyor. Avustralya’da yer alan Garvan Tıbbi Araştırmalar Enstitüsü’ndeki araştırmacılar, farelerin bağışıklık sisteminde yer alan lenf düğümlerinin üzerinde bulunan ve “Subcapsular Proliferative Foci” (kısaltılmış hali ile SPF) olarak isimlendirdikleri ince, yassı yapıları fark etmişler. Tespit edilen bu yapılar, enfeksiyona karşı bir savaş başlatabilmek amacıyla planlar yapan biyolojik bir karargâh gibi görünüyor.   ...

Gözler Olmadan “Görmek”: Görsel Olmayan Fotoreseptörler

Biz insanlar, büyük oranda gözlerimizden gelen veriyi işlemeye dayalı canlılarız ve normal bir görüşe sahip olanlarımız, dış dünyayı deneyimleme biçimimizde gözlerimizin hayati önemde olduğunu düşünmektedir. Görme, ışık temelli algılamanın ilerlemiş bir formudur, yani ışığa hassasiyettir. Fakat, gündelik yaşamımızda, ışık temelli algılamanın diğer bazı gelişmemiş biçimlerini de deneyimleriz. Örneğin hepimiz, sıcak Güneş’in hazzını derimizde hissederken, burada ışığı değil, ısıyı bir algı olarak kullanırız ve bu algımız için hiçbir göz veya özel fotoreseptör hücresine ihtiyaç duymayız. Bilim insanları, son yıllarda, insanlar da dahil olmak üzere pek çok hayvan türünün, gözlerin dışında, beklenmedik yerlerde, ışığı saptayabilen özel moleküllere sahip olduğunu keşfettiler. Bu “göz dışı fotoreseptörler”, genellikle, merkezi sinir sisteminde veya deride ve aynı zamanda da iç organlarda da sıklıkla bulunabiliyor. Peki göz dışı yerlerde bulunan bu ışığa duyarlı moleküller ne ya...