Ana içeriğe atla

Beyinde Zaman ve Mekân Dengelemesi


Bilim insanları, uzunca bir süredir, beyinde gerçekleşen aktiviteleri dinleyerek, beynin gürültülü ve görünüşe göre rastgele aktivitesinin kaynağını anlamaya çalışıyor. Son 20 yılda, “dengeli ağ teorisi“,  nöronların tekrar tekrar birleşmiş ağlarındaki yavaşlama ve coşmanın bir dengesi aracılığıyla söz konusu bu rastgele aktiviteyi açıklamak için ortaya çıkmıştır. Bir grup bilim insanı da beyin devrelerini beyin aktivitesine bağlayan derin ve test edilebilir tahminler sağlamak için dengeli modeli genişletti.
University of Pittsburgh’dan araştırmacılar, Nature Neuroscience’da yayımlanan makalelerinde, bu yeni modelin, canlı hayvanların beyinlerindeki nöronların son derece değişken tepkilerine dair deneysel bulguları doğru bir şekilde açıkladığını söylüyor.
Yeni model, nöral devrelerde nöronlar arasındaki aktivitenin nasıl koordine edildiği konusunda daha zengin bir kavrayış sağlıyor. Araştırmacılara göre, model, gelecekte öğrenme ya da hastalıkla ilişkili beyin aktivitesini öngören sinirsel “işaretleri” keşfetmek için kullanılabilir. Araştırmacılardan Brent Doiron; normal olarak beyin aktivitesinin çoğunlukla rastgele ve son derece değişken olmasından kaynaklı hesaplamayı zorlaştırdığını söylüyor. Nöral hesaplamanın mekaniğini anlamak için, bir nöronal ağın dinamiklerinin ağın mimarisine nasıl bağlı olduğunu bilmeniz gerekir ve bu son araştırma bizi bu amaca önemli oranda yaklaştırıyor.
Dengeli ağ teorisinin önceki versiyonları, uyarıcı ve yavaşlatıcı girdilerin zamanlaması ve frekansının nöral davranışta ortaya çıkan değişkenliği nasıl şekillendirdiğini yakalamıştı, ancak bu modeller biyolojik olarak gerçekçi olmayan kısayollar kullanmıştı.
Doiron’a göre, orijinal model; beyindeki bağlanma biçiminin mekânsal bağımlılığını göz ardı etti, fakat birbirine yakın nöron çiftlerinin birbirine görece uzak nöron çiftlerine kıyasla bağlantı kurmaları daha muhtemeldir. Doiron; önceki modellerin, ya beynin aksine tamamen rastgele etkinlik, ya da derin bir nöbette görebileceğiniz tamamen senkronize edilmiş sinirsel davranışlar gibi gerçekçi olmayan davranışlar ürettiğini söylüyor.
Bu denge bağlamında ise, nöronlar sürekli bir gerginlik halindedir. Araştırmacılardan Matthew Smith; bu durumu ayağınızı parmaklarınız üzerinde dengede tutmaya benzetiyor. Eğer, aşırı küçülme varsa, bu durum sinirsel atışlarda veya iletişimde büyük dalgalanmalara neden olur.
Yeni model, nöral ağların mekânsal ve zamansal karakteristiklerini ve nöronlar arasındaki aktivitedeki korelasyonları (bir nörondaki “ateşleme” diğer bir nörondaki ateşlemeyle bağlantılı mı değil mi) göz önüne alıyor. Model, bilim insanlarının görsel dünyayı işleyen beyin bölgesinde incelenen nöronların davranışını öngörmek için kullanabileceği kadar önemli bir gelişmedir.
Model geliştirildikten sonra, bilim insanları, görsel korteksteki verileri inceledi ve modellerinin, ne kadar uzak olduklarına bağlı olarak nöronların davranışını doğru bir şekilde öngörebildiği bulgusuna ulaştı. Yakın nöron çiftlerinin aktivitelerinin güçlü bir biçimde bağlantılı olduğu, orta derecede uzaklıkta bulunan nöron çiftlerinin ters-ilişkili olduğu (bir tanesi fazla tepki oluşturuyorsa, diğeri az tepki oluşturuyor) ve uzak mesafedeki nöronların ise bağımsız olduğu görüldü.
Model, beynin bilgiyi nasıl hesapladığına dair kavrayışımızı geliştirmeye yardımcı olacak, çünkü, ağ yapısının ağ değişkenliğini nasıl belirlediğini tanımlamak için ileriye doğru atılmış büyük bir adımdır. Doiron’a göre, herhangi bir ciddi beyin hesaplama teorisi, koddaki gürültüyü hesaba katmalıdır. Çünkü, nöronal değişkenlikteki değişim, dikkat ve öğrenme gibi önemli bilişsel işlevlere eşlik eder ve ayrıca Parkinson hastalığı ve epilepsi gibi yıkıcı patolojik durumların bir işaretidir.
Bilim insanları, görsel kortekste testlerde bulunurken, modellerinin beynin diğer bölümlerinde, örneğin işitsel veya koku işaretlerini işleyen alanlardaki aktiviteleri tahmin etmek için de kullanılabileceğini düşünüyor. Ayrıca ekip, modelin tüm memeli beyinleri için kullanılabileceğini ileri sürüyor.
Doiron ve Smith’in hesaplama yaklaşımının en belirgin özelliği, amacının beyin işlevinin genel prensiplerini genel anlamda birçok senaryoya uygulanabileceğidir. Bu model, sinirbiliminde iyi teoriler sağlamak için atılan önemli bir adımdır.

Yorumlar

Bu blogdaki popüler yayınlar

Neden Kan Gruplarına Sahibiz?

1900 yılında, Avustralyalı doktor Karl Landsteiner tarafından keşfedilen kan grupları, 1930 yılında Landsteiner’a Nobel Ödülü’nü getirdi. O günden beri de, bilim insanları kan gruplarının biyolojisine dair daha derinlemesine incelemeleri mümkün kılan çok daha güçlü araçlar geliştirdi. Yapılan araştırmalar neticesinde, kan grupları hakkında çok daha ilginç bulgulara, örneğin; soy takibi, kan gruplarının sağlığımız üzerindeki etkileri gibi çeşitli ipuçlarına ulaşıldı. Ancak bir yandan da kan gruplarına dair çözümüne hala erişemediğimiz bazı gizemler de varlığını sürdürmeye devam ediyor. Öte yandan, modern tıp sayesinde başarabildiğimiz ve hayat kurtardığımız pek çok gelişme tarihin büyük bir çoğunluğunda neredeyse bir hayal düzeyindeydi. Rönesans doktorları, hastalarının damarlarına kan aktarımı yapıldığında neler olacağını merak etmiş, bazı doktorlar bunun pek çok hastalığın, hatta mental rahatsızlıkların bile tedavisi olabileceğini düşünüyordu. Nihayet, 1600lü yıllarda,...

Bilim İnsanları, İnsan Bağışıklık Sisteminde Yepyeni Bir “Mikro-Organ” Keşfetti

Araştırmacılar, farelerin ve insanların bağışıklık sistemlerinde yepyeni bir ‘mikro organ’ keşfettiler. On yıllar boyunca bu tarzda bir keşif yapılmamıştı. Üstelik bu keşif, bilim insanlarının gelecekte daha etkili aşılar geliştirmelerini sağlayabilir. Yüzyıllardır süren aşı çalışmaları, vücudun bir kez özel bir enfeksiyon türü ile karşılaşması durumunda, bir dahaki sefere bu enfeksiyona karşı daha iyi savaştığını gösteriyor. Bu yeni araştırma, keşfedilen mikro organın, vücudumuzun bağışıklığı ‘hatırlamasında’ anahtar bir role sahip olabileceğini ileri sürüyor. Avustralya’da yer alan Garvan Tıbbi Araştırmalar Enstitüsü’ndeki araştırmacılar, farelerin bağışıklık sisteminde yer alan lenf düğümlerinin üzerinde bulunan ve “Subcapsular Proliferative Foci” (kısaltılmış hali ile SPF) olarak isimlendirdikleri ince, yassı yapıları fark etmişler. Tespit edilen bu yapılar, enfeksiyona karşı bir savaş başlatabilmek amacıyla planlar yapan biyolojik bir karargâh gibi görünüyor.   ...

Gözler Olmadan “Görmek”: Görsel Olmayan Fotoreseptörler

Biz insanlar, büyük oranda gözlerimizden gelen veriyi işlemeye dayalı canlılarız ve normal bir görüşe sahip olanlarımız, dış dünyayı deneyimleme biçimimizde gözlerimizin hayati önemde olduğunu düşünmektedir. Görme, ışık temelli algılamanın ilerlemiş bir formudur, yani ışığa hassasiyettir. Fakat, gündelik yaşamımızda, ışık temelli algılamanın diğer bazı gelişmemiş biçimlerini de deneyimleriz. Örneğin hepimiz, sıcak Güneş’in hazzını derimizde hissederken, burada ışığı değil, ısıyı bir algı olarak kullanırız ve bu algımız için hiçbir göz veya özel fotoreseptör hücresine ihtiyaç duymayız. Bilim insanları, son yıllarda, insanlar da dahil olmak üzere pek çok hayvan türünün, gözlerin dışında, beklenmedik yerlerde, ışığı saptayabilen özel moleküllere sahip olduğunu keşfettiler. Bu “göz dışı fotoreseptörler”, genellikle, merkezi sinir sisteminde veya deride ve aynı zamanda da iç organlarda da sıklıkla bulunabiliyor. Peki göz dışı yerlerde bulunan bu ışığa duyarlı moleküller ne ya...